Switch Cisco

Administrer par le port console

L'administration par port console utilise les paramètres suivants :

- Bits de données : 8 bits
- Bit stop = 1 bit
- Bit de parité : aucun (none)
- Contrôle de flux de données : XON/XOFF
- Débit : 9600 bits/s

Mode d'accès

Une fois établie la connexion avec le switch (par le réseau ou le câble console), on tombe sur le niveau **sans privilèges** qui permet quelques manipulations de diagnostic.

switch>

On passera dans le mode *privilège* grâce à la commande *enable* de manière à pouvoir réaliser la sauvegarde notamment.

switch> enable
switch#

On pourra passer en mode configuration pour réaliser le paramétrage du switch

conf t

Réinitialiser le switch

La réinitialisation passe par un appui long sur le bouton en façade.

Si on a accès à la console, on peut aussi utiliser la syntaxe

```
write erase
```

Visualiser la configuration

On peut connaître de multiples éléments de la configuration. On utilise la commande **show** depuis le niveau mode *privilège*.

Voir l'ensemble du paramétrage

sho run

Voir la configuration des vlan

sho vlan

Voir le paramétrage ip

sho ip interface

Accès aux interfaces

Les interfaces sont nommées fa0/<n°_interface> (ethernet 100 Mbps) et gi0/<n°_interface> (ethernet 1 Gbps).

L'accès à une interface s'écrit

```
interface fastethernet<N°_interface>
```

ou

```
interface gigabit <N°_interface>
```

<u>Remarque</u> : s'il y a plusieurs modules d'interface, *fa0/x* peut-être décliné en *fa1/x*, etc.

L'accès à une plage d'adresse s'écrit :

interface range fa0/<n°départ>-<n°fin>

Créer un VLAN

La création de VLAN se passe en deux temps :

- Déclarer le vlan
- Le paramétrer et l'activer

Déclarer un VLAN

vlan <n°_vlan>

```
http authentication local
ip http port <numero_port> //option possible
username <nom_user> privilege 15 secret 0 <mot_passe>
```

Pour l'administrer à distance, il faudra disposer d'un port dans le VLAN ou que le VLAN passe dans un port en 802.1Q.

```
interface vlan <n°_vlan>
name <nom_du_vlan>
```

Paramétrer le VLAN

Mettre un port dans un VLAN

interface <numero_interface>
switchport mode access
switchport access vlan <n°_vlan>

Mettre un port en 802.1Q

interface <numero_interface>
<code lscript>switchport mode trunk
switchport trunk allowed vlan add <n°_vlan>
switchport trunk allowed vlan all

Définir le paramétrage adresse IP

Les switch de niveau 2 n'ont qu'une adresse IP, celle qui permet de l'administrer à distance. Il faut affecter une IP à un VLAN.

interface vlan <N°_vlan>
ip address <ip> <masque>
ip default-gateway <ip_passerelle>

Activer l'accès distant

Accès par interface Web

On peut activer l'accès à l'interface Web en 3 étapes :

- 1. activer le service
- 2. préciser le mode d'authentification
- 3. créer un utilisateur avec les privilèges

```
Switch Cisco
```

Accès Telnet

L'accès Telnet nécessite la définition d'un mot de passe pour le passage en mode enable :

```
enable password <mot_passe>
//ou avec 0 si le mot de passe est saisi en clair ou 5 si on fournit le
hachage du mot de passe
enable secret {0|5} <mot_passe>
```

On peut ensuite accorder la connexion distante :

```
line vty 0 4 //les valeurs numériques correspondent au niveau de privilège
password <mot_passe_telnet>
login
```

Accès SSH

L'accès SSH nécessite la présence d'un compte local dans le matériel. A n'ajouter que s'il n'existe pas déjà

username <nom_user> secret {0|5} <motpasse>

On doit ensuite configurer SSH lui-même en choisissant la version 2, la 1 étant obsolète

ip ssh version 2

Et, enfin, ouvrir l'accès distant :

```
line vty 0 4
login local
transport input ssh
```

Sauvegarder la configuration

Un switch utilise la mémoire vive pour son paramétrage. Il est nécessaire d'inscrire les modifications dans la mémoire permanente pour les retrouver suite à une coupure électrique. Cette sauvegarde se fait depuis le *mode privilège* (sortir du mode config).

Sauvegarde locale

Pour inscrire la configuration de manière permanente dans le switch, on utilisera la commande :

copy running-config startup-config

Sauvegarde distante

On peut aussi faire une copie de la configuration sur un serveur *tftp* distant

copy running-config tftp://<ip_serveur>/<nom_fichier>

Il sera aussi possible de restaurer cette configuration sur un switch (paramétré avec une adresse IP).

copy tftp://<ip_serveur>/<nom_fichier> running-config

Agrégation de liens LACP

L'agrégation consiste à **cumuler plusieurs ports** comme un **groupe unique**. On utilise le terme **port-channel ou channel-group**, ceci étant réalisé par le protocole **LACP** (Link Aggregation Control Protocol, IEEE 802.3ad).

L'agrégation assure :

- de la répartition de charge : les ports du groupe sont actifs simultanément
- de la tolérance de panne : le groupe assure la communication même en cas de rupture d'un des liens

Affectation d'un port à un agrégat

interface <interface>
channel-group <numeroAgrégat> mode <modeagregat>

- le numéro est entre 1 et 6, tous les ports dans le même agrégat fonctionneront communément
- le mode est au choix :

```
active Enable LACP
unconditionally
auto Enable PAgP only if a
PAgP device is detected
desirable Enable PAgP
unconditionally
on Enable Etherchannel only
passive Enable LACP only if a
LACP device is detected
```

<u>Remarque</u> : une fois intégré dans un agrégat, le port n'est plus pris en compte isolément (trunk, access). La seule action qui le concerne est le shutdown ou la configuration channelgroup

Configuration de l'agrégat

L'agrégat devient une interface au même titre qu'un port. On peut donc la mettre en mode trunk, en mode access, l'allumer ou l'éteindre, etc.

Exemple

interface port-channel 1
switchport mode trunk

Visualisation des configurations LACP

Visualiser l'état global de la configuration

sho etherchannel

Visualiser le détail de la configuration

show interface etherchannel

```
FastEthernet0/1:
Port state = 1
                       Mode = Active
GC = -
Channel group = 1
                                            Gcchange = -
Port-channel = Pol
                                             Pseudo port-channel = Pol
                        Load = 0x00
           = 0
                                                        LACP
Port index
                                             Protocol =
Flags: S - Device is sending Slow LACPDUS F - Device is sending fast LACPDUs
       A - Device is in active mode.
                                       P - Device is in passive mode.
Local information:
                        LACP port Admin
                                                     Port
                                                               Port
                                              Oper
                       Priority
                                                     Number
Port
       Flags State
                                    Key
                                                               State
                                              Kev
Fa0/1
        SA
               down
                        32768
                                     0x0
                                               0 \ge 0
                                                      0x1
Age of the port in the current state: 00d:00h:37m:38s
GigabitEthernet0/1:
Port state = 1
Channel group = 1
                       Mode = Active Gcchange = -
                       GC = -
Port-channel = Pol
                                            Pseudo port-channel = Pol
Port index = 0
                       Load = 0x00
                                            Protocol = LACP
Flags: S - Device is sending Slow LACPDUS F - Device is sending fast LACPDUs
       A - Device is in active mode. P - Device is in passive mode.
Age of the port in the current state: 00d:00h:37m:38s
Port-channel1:Port-channel1 (Primary aggregator)
Age of the Port-channel = 00d:00h:46m:18s
Logical slot/port = 2/1
                                 Number of ports = 0
HotStandBy port = null
Port state
Protocol
                 = 1
Port Security = Disabled
```

Configurer le Spanning Tree

Dans la copie d'écran suivante le switch est root pour les vlans 1 à 100. Puis on affiche les données spanning-tree pour le vlan 4.

```
spanning-tree vlan 1-100 root primary
end
show spanning-tree vlan 4
```

VLAN04 Spanning tree enabled protocol rstp Root ID Priority 24726 Address 0026.525b.3500 This bridge is the root Hello **Time 2 sec Max** Age 20 **sec** Forward Delay 15 **sec** Bridge ID Priority 24726 (priority 24576 sys-id-ext 4) Address 0026.525b.3500 Hello **Time 2 sec Max** Age 20 **sec** Forward Delay 15 **sec** Aging **Time 300 sec** Interface Role Sts Cost Prio.Nbr Type -----Fa0/3 Desg FWD 19 128.3 P2p Gi0/1 Desg FWD 19 128.9 P2p

switch#

Dans l'exemple, l'interface prioritaire sera gi0/1 pour les vlans 1 à 100.

```
interface gigabitEthernet 0/1
spanning-tree vlan 1-100 port-priority 64
end
```

Afficher la configuration des vlan

Pour afficher la configuration il suffit de taper la commande suivante

show spanning-tree vlan 4

Configurer le SNMP

La configuration de SNMP consiste à définir la communauté et les droits d'accès associés.

snmp-server community <nom_communauté> <droits>

Les droits sont :

- RO : Lecture seule, permet de lire les informations
- RW : Lecture/écriture, permet d'affecter des paramétrages via SNMP

Mirorring de port

Il est possible de renvoyer le trafic de certains ports vers un port destination, pour éffectuer du monitoring (détection d'intrusion, métrologie, etc). On définit :

- la source : les ports dont on veut relever le trafic
- la destination : le port vers lequel on recopie le trafic

```
monitor session <numero_session> source interface <liste_ports>
monitor session <numero_session> destination interface <port_miroir>
```

- le <numero_session> permet d'effectuer plusieurs renvois. il doit être identique entre les deux lignes
- la la liste_ports> est une combinaison de *ports* et *range* séparés par des virgules (exemple : Gi1/0/1 3 , Gi1/0/5 22, Gi1/0/24)

Sources complète et détaillée

Pour avoir la documentation complète et détaillée aller sur ce lien : https://www.clemanet.com/spanning-tree.php#haut

From: https://wiki.sio.bts/ - WIKI SIO : DEPUIS 2017

Permanent link: https://wiki.sio.bts/doku.php?id=cisco&rev=1685516059

Last update: 2023/05/31 06:54

