2026/01/16 22:30 1/7 La couche modele et les données : démarrer avec Doctrine

La couche modele et les données : démarrer
avec Doctrine

Doctrine est un ORM php (mapping Objet/Relationnel). Les ORM consistent a réaliser la
correspondance entre le modele de données relationnel et le modele objets de la facon la plus aisée
et efficace possible. Un outil d'ORM propose un certain nombre de fonctionnalités parmi lesquelles :

e Assurer le mapping (correspondance) des tables avec les classes, des champs avec les
attributs, des relations et des cardinalités

e Proposer une interface qui permette de facilement mettre en oeuvre des actions de type CRUD
(Create/Read/Update/Delete)

» Proposer un langage de requétes indépendant de la base de données cible et assurer une
traduction en SQL natif selon la base utilisée

 Supporter différentes formes d'identifiants générés automatiquement par les bases de données
(identity, sequence, ...)

e Fournir des fonctionnalités pour améliorer les performances (cache, lazy loading, ...) .

Installation des dépendances Doctrine

Il faut d'abord installer les composants Doctrine dans notre projet.

composer require symfony/orm-pack
composer require symfony/maker-bundle --dev

Configuration de la connexion et création de la base de
données

Cette étape consiste a indiquer au projet I'adresse de la base de données, son nom, et le login/mot de
passe du compte permettant de s'y connecter. Pour cela, éditer le fichier de configuration .env (dans

c:\wamp64\www\webstudent\ ou a la racine du projet) et décommenter et adapter la ligne ci-dessous
#DATABASE URL=mysql://db user:db password@l27.0.0.1:3306/db _name

Exemple :

DATABASE URL="mysql://root:@127.0.0.1:3306/webstudent"

Cette configuration permet de se connecter a une base de données mysqgl nommée webstudent,
située localement. Le compte de connexion est root, sans mot de passe.

La console permet ensuite de créer la base de données en exécutant la commande ci-dessous :

> php bin/console doctrine:database:create

WIKI SIO : DEPUIS 2017 - https://wiki.sio.bts/

Last update: 2020/07/29 11:29 doctrinel https://wiki.sio.bts/doku.php?id=doctrinel&rev=1596022168

Lors de I'exécution de la commande, l'instruction sql qui est exécutée est affichée.

Créer une entité = classe métier

Dans symfony, les classes métiers se nomment des entités. Elles peuvent étre créées avec la console

> php bin/console make:entity

Le systéme nous invite alors a saisir I'ensemble des propriétés de I'entité. Pour chaque propriété,
nous devons préciser son type, si cette propriété sera nullable en bdd ou pas.

Dans I'exemple ci-dessous, nous créons l'entité Etudiant avec la propriété nom de type string de
50 caracteres. Vous créerez les propriétés nom, prenom, dateNaiss (type date), ville.

c : \wamp6d\www\webstudent>php bin/console make:entity

> Ftudiant

ity/Ftudiant.php
JEtudiantRepository.php

Entity generated! M some fields!
You can always add more fields later manually or by re-running this command.

nom

string

src/Entity/Etudiant.php

Un fichier nommé Etudiant.php a alors été créé dans le dossier .../src/Entity. Il s'agit d'une classe
métier classique avec ses propriétés. Les getters et les setters ont été générés automatiquement.
Une propriété supplémentaire id de type int a été ajoutée. Elle est utilisée pour faire le mapping de la
clé primaire de la table qui sera un numérigue auto-incrémenté.

Créer la table en base de données

https://wiki.sio.bts/ Printed on 2026/01/16 22:30

https://wiki.sio.bts/lib/exe/detail.php?id=doctrine1&media=sfndbcreation.png
https://wiki.sio.bts/lib/exe/detail.php?id=doctrine1&media=sfnentitycreation.png

2026/01/16 22:30 3/7 La couche modele et les données : démarrer avec Doctrine

Il est alors possible de créer la table correspondant a I'entité.

> php bin/console make:migration

Cette instruction créé a chaque fois un fichier dans le dossier src/migration avec les instructions sqgl a
exécuter.
A\wampod\www\webstudent>php bin/console make:migration

Next: Review the new migration
Then: Run the migration with
See

Pour exécuter les instructions sql, lancer la commande suivante :

> php bin/console doctrine:migrations:migrate

bstudent>php bin/console doctrine:migrations:migrate

WARNING! You are about to execute a database migration that could result in schema changes and data loss. Are you sure y
ou wish to continue?
Migrating to from

migrating

CREATE TABLE etudiant (id INT AUTO_INCREMENT NOT NULL, nom VARCHAR(58) NOT NULL, prenom VARCHAR(4@) NOT NULL, da
te_naiss DATE DEFAULT NULL, PRIMARY KE DEFAULT CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci ENGINE = InnoDB

migrated

finished
1 mig 0
1 sql querie

On voit alors I'instruction sql exécutée. Vérifiez en base I'existence de la table. A chaque propriété de
I'entité correspond un champ de la table. Celle ci a pour clé primaire Id.

Persister un objet en base

Il s'agit ici de créer un objet et de rendre ses données persistantes en base de données. Pour cela,
nous allons créer une nouvelle url qui exécutera une méthode du contréleur créant un objet et
insérant un enregistrement en base. Le contréleur redirigera vers une page de consultation de
I'enregistrement créé.

Ajout de la nouvelle route

Dans le fichier des routes, ajouter :

WIKI SIO : DEPUIS 2017 - https://wiki.sio.bts/

https://wiki.sio.bts/lib/exe/detail.php?id=doctrine1&media=sfnmigration.png
https://wiki.sio.bts/lib/exe/detail.php?id=doctrine1&media=sfnmigrate.png

Last update: 2020/07/29 11:29 doctrinel https://wiki.sio.bts/doku.php?id=doctrinel&rev=1596022168

etudiantAjouter:
path: /etudiant/ajouter
controller: App\Controller\EtudiantController::ajouterEtudiant

Modification du controleur

Ajout de la méthode ajouterEtudiant dans EtudiantController

public function ajouterEtudiant(){
// récupere le manager d'entités
$entityManager = $this->getDoctrine()->getManager();

// instanciation d'un objet Etudiant

$etudiant = new Etudiant();

$etudiant->setNom('Potter');

$etudiant->setPrenom('Harry');

$etudiant->setDateNaiss(new \DateTime(date('1980-07-31')));
$etudiant->setVille('Surrey');

// Indique a Doctrine de persister 1'objet
$entityManager->persist($etudiant);

// Exécue l'instruction sql permettant de persister lobjet, ici un
INSERT INTO
$entityManager->flush();

// renvoie vers la vue de consultation de 1'étudiant en passant
1'objet etudiant en paramétre
return $this->render('etudiant/consulter.html.twig"', [
'etudiant' => $etudiant,]);

}

une erreur apparaitra car la classe métier (I'entité) Etudiant n'est pas connue de EtudiantController. Il
faut donc l'importer en ajoutant la ligne ci-dessous au niveau des use (imports)

use App\Entity\Etudiant

Création de la vue

Dans le dossier templates/etudiant, créer le fichier ci-dessous, nommé consulter.html.twig

<!DOCTYPE html>
<html>
<head>
</head>
<body>
<h5>PAGE DE CONSULTATION D'UN ETUDIANT</h5>
<p>

https://wiki.sio.bts/ Printed on 2026/01/16 22:30

2026/01/16 22:30 5/7 La couche modele et les données : démarrer avec Doctrine

<table >
<tr><td>Id : </td><td>{{etudiant.id}} </td></tr>
<tr><td>Nom : </td><td>{{etudiant.nom}}</td>
<td rowspan="8" class="imgEtu">
{% set photo = 'img/etudiant/'~ etudiant.id ~'.jpg' %
<img src="{{ asset(photo | trans)}}"
title="{{ etudiant.prenom ~ " " ~ etudiant.nom }}" alt="{{ etudiant.prenom ~
" " ~ etudiant.nom }}"/></td></tr> </td>
<tr><td>Prénom : </td><td>{{etudiant.prenom}}</td></tr></tr>
<tr><td>Date de naissance :
</td><td>{{etudiant.dateNaiss|date("d/m/Y")}}</td></tr>
<tr><td>rue : </td><td>{{etudiant.numrue}}
{{etudiant.rue}}</td></tr>
<tr><td>code postal : </td><td>{{etudiant.copos}}</td></tr>
<tr><td>ville : </td><td>{{etudiant.ville}}</td></tr>
<tr><td>Surnom : </td><td>{{etudiant.surnom}}</td></tr>
</table>
</body>
</html>

Note : dans la vue ci-dessus,, des propriétés supplémentaires ont été ajoutées. Ajoutez les dans votre
entité étudiant et faites le mapping avec la base de données.

Tests

http://localhost/webstudent/public/etudiant/ajouter [x]

id nom prenom date_naiss ville

1 Potter Harry NULL surrey
Vérifier la présence de I'enregistrement en base.

Consulter un étudiant

public function consulterEtudiant($id){
$etudiant = $this->getDoctrine()
->getRepository(Etudiant::class)
->find($id) ;

if (!$etudiant) {
throw $this->createNotFoundException(
"Aucun etudiant trouvé avec le numéro '.$id
);

}

//return new Response('Etudiant : '.$etudiant->getNom());
return $this->render('etudiant/consulter.html.twig', [
'etudiant' => $etudiant,]);

WIKI SIO : DEPUIS 2017 - https://wiki.sio.bts/

https://wiki.sio.bts/lib/exe/detail.php?id=doctrine1&media=sfnconsultetud.png
https://wiki.sio.bts/lib/exe/detail.php?id=doctrine1&media=sfnpersistetud.png

Last update: 2020/07/29 11:29 doctrinel https://wiki.sio.bts/doku.php?id=doctrinel&rev=1596022168

}

La méthode prend en parametre I'id de I'étudiant permettant la recherche en bdd de I'étudiant selon
son id. Il faut donc indiquer dans I'url I'id de I'étudiant. Dans le fichier de routes, il faut donc ajouter le
parametre :

etudiantConsulter:
path: /etudiant/consulter/{id}
controller: App\Controller\EtudiantController::consulterEtudiant

Lister les étudiants

EtudiantController, méthode permettantd e lister les étudiants

public function listerEtudiant(){
$repository = $this->getDoctrine()->getRepository(Etudiant::class);
$etudiants = $repository->findAll();
return $this->render('etudiant/lister.html.twig"', [
'pEtudiants' => $etudiants,]);

}

Vue Twig listant les étudiants

<!IDOCTYPE html>

<html>
<head>
<meta charset="UTF-8">
<title>{% block title %}Welcome!{% endblock %}</title>
{% block stylesheets %}{% endblock %}
</head>
<body>

{% block body %}{% endblock %}
{% block javascripts %}{% endblock %}
LISTE DES ETUDIANTS</br>
<table>
{% for e in pEtudiants %}
<tr>
<td>{{
e.nom }}</td>
<td>{{ e.prenom }}</td>
<td>{{ e.dateNaiss|date('d/m/Y"') }}</td>
<td>{{ e.ville}}</td>
% else %}
<tr>
<td>Aucun etudiant n'a été trouvé.</td>
</tr>
% endfor %}
</table>
</body>

https://wiki.sio.bts/ Printed on 2026/01/16 22:30

2026/01/16 22:30 717 La couche modele et les données : démarrer avec Doctrine

</html>

From:
https://wiki.sio.bts/ - WIKI SIO : DEPUIS 2017

Permanent link:
https://wiki.sio.bts/doku.php?id=doctrinel&rev=1596022168

Last update: 2020/07/29 11:29

WIKI SIO : DEPUIS 2017 - https://wiki.sio.bts/

https://wiki.sio.bts/
https://wiki.sio.bts/doku.php?id=doctrine1&rev=1596022168

	La couche modèle et les données : démarrer avec Doctrine
	Installation des dépendances Doctrine
	Configuration de la connexion et création de la base de données
	Créer une entité = classe métier
	Créer la table en base de données
	Persister un objet en base
	Ajout de la nouvelle route
	Modification du contrôleur
	Création de la vue
	Tests

	Consulter un étudiant
	Lister les étudiants

