2026/01/09 12:26 1/7 Les relations entre entités

Les relations entre entités

Maintenant que les entités sont créées, il nous faut créer les relations. Lorsque les relations seront
créées, Doctrine se charge de réaliser le mapping en base de données en créant les champs
supplémentaires étant clés étrangeres, les nouvelles tables si nécessaire.

Il existe principalement 3 types de relations entre entités :

¢ |a relation many-to-one/one-to-many
* |a relation many-to-many
e |'néritage

La relation Many-To-One

Dans le contexte webstudent, il s'agit par exemple de la relation entre I'entité Etudiant et I'entité
Maison.

(=]

Un étudiant appartient a une et une seule maison (Many-To-One). Cela signifie qu'une propriété
supplémentaire de type Maison doit étre ajoutée a I'entité Etudiant (avec son getter et son setter). En
base de données, la clé étrangere id_maison sera ajoutée dans la table Etudiant et fera référence au
champ id de la table Maison.

Une maison comprend plusieurs étudiants (One-To-Many). Cette relation n'est pas toujours
nécessairement a implémenter. Il faut se poser la question, si au niveau applicatif, nous aurons
besoin, partant d'une maison, de récupérer, lister, consulter des étudiants. Dans notre cas, oui, donc
nous implémenterons aussi cette relation. Dans I'entité Maison, une propriété supplémentaire, liste
d'étudiants devra étre ajoutée. En base de donnée, cette relation “inverse” ne change rien, le lien
étant assuré par la clé étrangere créée lors de la relation Many-To-One.

La relation Many-To-One doit donc étre implémentée dans tous les cas mais pas forcément la relation
inverse One-to-Many.

Pour assurer le mapping avec la base de données, des annotations seront donc ajoutées au dessus de
chaque propriété assurant la relation.

Création des relations avec la console :

La version 4 de Symfony permet maintenant de créer ces annotations grace a la console. Il s'agit de
la méme commande que le création d'une entité.

>php bin/console make:entity

Liste des informations a fournir :

 Class name of the entity to create or update : Etudiant

WIKI SIO : DEPUIS 2017 - https://wiki.sio.bts/

https://wiki.sio.bts/lib/exe/detail.php?id=doctrine3&media=sfnmanytoone.png

Last update: 2022/11/09 08:53 doctrine3 https://wiki.sio.bts/doku.php?id=doctrine3&rev=1667984028

e New property hame : maison (avec un m minuscule, pour respecter CamelCase, puisqu'il s'agit d'une
propriété !)

Field type : relation

What class should this entity be related to? : Maison (avec un M majuscule puisqu'il s'agit du nom de
I'entité)

What type of relationship is this?: ManyToOne

Is the Etudiant.maison property allowed to be null (nullable)?: yes

e Do you want to add a new property to Maison so that you can access/update Etudiant objects
from it - e.g. $maison—getEtudiants()? yes (Cette derniére instruction permet de créer la relation inverse
OneToMany dans I'entité Maison.)

* New field name inside Maison : etudiants (avec un e minuscule car c'est une propriété et un s car c'est

c'est une liste)

Résultat :

« Liste a puceDans I'entité Etudiant, on retrouve la propriété supplémentaire maison annotée de
la relation ManyToOne :

/**
* @ORM\ManyToOne(targetEntity="App\Entity\Maison",
inversedBy="etudiants")
*/
private $maison
. Le getter et le setter de cette propriété ont été également implémentés :

public function getMaison ?Maison

$this->maison

public function setMaison(?Maison $maison): self
$this->maison $maison

$this

e Dans l'entité Maison, une propriété supplémetaire a été ajoutée :

/**
* @ORM\OneToMany (targetEntity="App\Entity\Etudiant", mappedBy="maison")
*/
private $etudiants

Avec les getters et les setters et les méthodes d'ajout/suppression de liste

Vao
* @return Collection|Etudiant[]

https://wiki.sio.bts/ Printed on 2026/01/09 12:26

2026/01/09 12:26 3/7 Les relations entre entités
*/
public function getEtudiants Collection

$this->etudiants

public function addEtudiant(Etudiant $etudiant
$this->etudiants->contains($etudiant

$this->etudiants $etudiant
$etudiant->setMaison($this

$this

public function removeEtudiant(Etudiant $etudiant

$this->etudiants->contains($etudiant

$this->etudiants->removeElement ($etudiant

self

self

// set the owning side to null (unless already changed)

$etudiant->getMaison $this
$etudiant->setMaison(null

$this

Réaliser le mapping avec le base de données :

Exécuter les instructions de mise a jour de la base de données
php bin/console make:migration

php bin/console doctrine:migrations:migrate

Un nouveau champ nommé maison_id a été créé. Il s'agit en plus d'une clé étrangere faisant

référence au champ id de la table Maison.

Tests de la relation ManyToOne :

Pour tester la relation ManyToOne, nous allons récupérer une maison et I'ajouter a un étudiant. Nous
allons créer la nouvelle route permettant de modifier un étudiant : Dans le fichier routes.yaml :

etudiantModifier
path etudiant/modifier/{id
controller: App\Controller\EtudiantController

modifierEtudiant

WIKI SIO : DEPUIS 2017 - https://wiki.sio.bts/

Last update: 2022/11/09 08:53 doctrine3 https://wiki.sio.bts/doku.php?id=doctrine3&rev=1667984028

Dans le fichier EtudiantController, nous ajoutons la nouvelle méthode :
public function modifierEtudiant(ManagerRegistry $doctrine, $id

//récupération de 1'étudiant dont 1'id est passé en paramétre
$etudiant= $doctrine->getRepository(Etudiant: :class find($id

$etudiant
$this->createNotFoundException
"Aucun etudiant trouvé avec le numéro '.$id

// récupération de la maison des griffondor a partir du code de la
maison

$maison
$doctrine->getRepository(Maison: :class findOneBy (['code’ 'SPT'

$maison
$this->createNotFoundException
'"Aucune maison trouvé avec ce nom'

//Affectation de la maison a l'étudiant
$etudiant->setMaison($maison

// persistence de l'objet modifié

$entityManager = $this->getDoctrine getManager
$entityManager-=>persist($etudiant
$entityManager->flush

//return new Response('Etudiant : '.$etudiant->getNom());
$this->render('etudiant/consulter.html.twig"’
‘etudiant’ $etudiant

http://localhost/webstudent/public/etudiant/modifier/4

https://wiki.sio.bts/ Printed on 2026/01/09 12:26

http://www.php.net/flush

2026/01/09 12:26 5/7 Les relations entre entités

Tests de la relation OneToMany:

Pour tester la relation OneToMany, nous allons récupérer une maison a partir du code qui sera passé
en parametre de l'url et lister tous les étudiants de cette maison.

Ajout de la route :

maisonConsulter
path: /maison/consulter/{code
controller: App\Controller\MaisonController::consulterMaison

Ajout du controleur et de la méthode consulterMaison :
class MaisonController extends AbstractController

/*
* @Route("/maison", name="maison")
*/
public function consulterMaison(ManagerRegistry $doctrine, $code
$repository = $this->getDoctrine getRepository(Maison: :class
$maison= $doctrine->getRepository(Maison::class)->findOneBy (['code’
'SPT'

$this->render('maison/consulter.html.twig’
‘pMaison’ $maison

Création de la vue dans un nouveau dossier maison

DOCTYPE html

html
head
meta charset="UTF-8"
title>Maison-consulter</title
head
body
h5-BIENVENUE DANS LA MAISON DES pMaison.nom upper h5
p
table

tr><td-id</td><td>Nom</td><td>Prénom</td><td>datenaissance</td><td>ville</t
d tr
e in pMaison.etudiants
tr

td><a href="{{ path('etudiantConsulter', { 'id': e.id }) }}"
e.id a td

td><a href="{{ path('etudiantConsulter', { 'id': e.id }) }}"
e.nom a td

WIKI SIO : DEPUIS 2017 - https://wiki.sio.bts/

Last update: 2022/11/09 08:53 doctrine3 https://wiki.sio.bts/doku.php?id=doctrine3&rev=1667984028

td><a href="{{ path('etudiantConsulter', { 'id': e.id }) }}"

e.prenom a-</td
td e.dateNaiss date('d/m/Y' td
td e.ville td
tr
table
body
html

http://localhost/webstudent/public/maison/consulter/GFD

Relation Many-To-Many

Dans le contexte webstudent, il s'agit de la relation entre Competence et Professeur. =]
Création de la relation avec la console :

Avec la commande permettant de générer les entités, nous pouvons créer la relation en renseignant
les informations ci-dessous :

Class name of the entity to create or update : Competence

New property name : professeurs (avec un s car c'est une collection)

Field type : relation

What class should this entity be related to?: Professeur

Relation type? : ManyToMany

Do you want to add a new property to Professeur so that you can access/update Competence

objects from it - e.g. $professeur-»getCompetences()? yes (permet de créer la relation inverse, c'est-a-
dire dans Professeur, créer une collection de professeurs.

Dans I'entité Compétence, une propriété de type collection de professeurs a été ajoutée. Dans I'entité
Professeur, une propriété de type collection de compétences a été ajoutée.

mapping des relations en base de données :

Aprées avoir exécuté les commandes de mapping, une nouvelle table a été créée en base de données
nommée competence professeur. Cette table comporte deux champs composant la clé primaire :
competence_id + professeur_id. Chaque champ est aussi clé étrangéere en référence respectivement a
la table compétence et professeur.

Relation de type Classe-association

Dans le contexte webstudent, ce type de relation est représenté par les entités et relation entre
Etudiant et Competence.

https://wiki.sio.bts/ Printed on 2026/01/09 12:26

http://www.php.net/date
https://wiki.sio.bts/lib/exe/detail.php?id=doctrine3&media=sfnmanytomany.png

2026/01/09 12:26 717 Les relations entre entités

—
+ Etudiant

- nom

- prenom

- dateNaiss
- ville

- surnom

00000

+ Competence
& -code
& -libele
& - nbEtudiantsMax

Il faut transformer les relations manyToMany en relations ManyToOne comme ci-dessous : [x]

Il faut donc créer une nouvelle entité, Note avec les deux propriétés primitives dateNote et note puis
créer les deux relations ManyToOne vers Etudiant et vers Competence.

Aprées exécution des commandes de mapping de base de données, la table Note contiendra id en clé
primaire ainsi que deux clés étrangeres etudiant_id et competences_id faisant référence
respectivement a Etudiant et Competence.

From:
https://wiki.sio.bts/ - WIKI S10 : DEPUIS 2017

Permanent link:
https://wiki.sio.bts/doku.php?id=doctrine3&rev=1667984028

Last update: 2022/11/09 08:53

WIKI SIO : DEPUIS 2017 - https://wiki.sio.bts/

https://wiki.sio.bts/lib/exe/detail.php?id=doctrine3&media=sfnclasseassociation.png
https://wiki.sio.bts/lib/exe/detail.php?id=doctrine3&media=sfnclassassoc2.png
https://wiki.sio.bts/
https://wiki.sio.bts/doku.php?id=doctrine3&rev=1667984028

	Les relations entre entités
	La relation Many-To-One
	Création des relations avec la console :
	Réaliser le mapping avec le base de données :
	Tests de la relation ManyToOne :
	Tests de la relation OneToMany:

	Relation Many-To-Many
	Création de la relation avec la console :
	mapping des relations en base de données :

	Relation de type Classe-association

