2026/01/14 11:02 1/6 Création des formulaires

Création des formulaires

Création de EtudiantForm

Les formulaires peuvent étre créés grace a une ligne de commande en se basant sur une entité
existante. Nous allons créer le formulaire permettant de saisir les informations d'un étudiant

[l faut d'abord installer le composant permettant la création des formulaires :
composer require symfony/form

La commande ci-dessous permet ensuite de créer un formulaire a partir de I'entité etudiant :
php bin/console make:form

Le systeme nous demande alors le nom de la classe qui contiendra I'ensemble des champs a créer
(celui ci doit avoir pour nom : nomEntiteType) ainsi que le nom de I'entité servant de support a la
construction du formulaire. A chaque propriété de I'entité (sauf id) correspondra un champ de
formulaire.

Exemple pour étudiant :

e The name of the form class : EtudiantType
e The name of Entity or fully qualified model class name that the new form will be bound to :
Etudiant

L'exécution de cette commande créé un nouveau dossier Form dans src et un nouveau fichier
EtudiantType, tres succint.

Création de la vue

Il faut ensuite créer la vue twig (par exemple templates/etudiant/ajouter.html.twig) permettant
I'affichage du formulaire. Les tags twig ci-dessous permettent de gérer I'affichage des différents
éléments du formulaire.

templates/etudiant/ajouter.html.twig #}
form start(form
form widget(form
form_end(form

Modification du controleur

Le contrdleur doit étre modifié pour générer le formulaire grace a EtudiantForm et renvoyer vers la
vue.

WIKI SIO : DEPUIS 2017 - https://wiki.sio.bts/

Last update: 2021/12/08 08:38 form https://wiki.sio.bts/doku.php?id=form&rev=1638952718

public function ajouterEtudiant

$etudiant new etudiant
$form $this->createForm(EtudiantType: :class, $etudiant
$this->render('etudiant/ajouter.html.twig', array
"form' $form->createView

Amelioration de EtudiantType

le formulaire ne contient actuellement que des champs de type input text. Nous allons I'enrichir :
public function buildForm(FormBuilderInterface $builder, array $options

$builder
add('nom', TextType: :class
add('prenom', TextType::class
add('dateNaiss', DateTimeType::class, array('input’
‘datetime’
‘'widget'
'single text'
‘format'
‘dd/MM/yyyy' //L'option 'format' doit étre supprimée si le format HTML5
des dates est activée (message d'erreur)

'required’
true

'label!’ 'date de
naissance'

'placeholder!’

'jj/mm/aaaa’
add('ville', TextType::class
add('numRue', TextType: :class
add('rue', TextType: :class
add('copos', TextType: :class
add('sexe'’
add('surnom', TextType::class
add('maison', EntityType::class, array('class'

"App\Entity\Maison', 'choice label!’ ‘nom'
//->add('promotion')
add('enregistrer', SubmitType::class, array/('label’ "Nouvel
étudiant'

Ne pas oublier les use :

use Symfony\Component\Form\Extension\Core\Type\SubmitType
use Symfony\Component\Form\Extension\Core\Type\TextType
use Symfony\Component\Form\Extension\Core\Type\DateType

https://wiki.sio.bts/ Printed on 2026/01/14 11:02

http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array

2026/01/14 11:02 3/6 Création des formulaires

use Symfony\Bridge\Doctrine\Form\Type\EntityType
use Symfony\Component\Form\Extension\Core\Type\DateTimeType

Tester le nouveau formulaire : http://localhost/webstudent/public/etudiant/ajouter

Le formulaire contient maintenant un champ date devant étre saisie obligatoirement (propriété
required) et au format francais, une liste déroulante proposant les différents maisons. Tous les

composants html de base peuvent ainsi étre crées avec des propriétés spécifiques. Il est aussi

possible de créer son propre composant. https://symfony.com/doc/current/forms.html

Soumettre les données

[l faut maintenant envoyer les données en base. La soumission des données est effectuée dans le
contréleur.

public function ajouterEtudiant(Request $request
$etudiant = new etudiant
$form $this->createForm(EtudiantType: :class, $etudiant
$form->handleRequest ($request
$form->isSubmitted $form->isValid
$etudiant = $form->getData
$entityManager = $this->getDoctrine getManager
$entityManager-=>persist($etudiant

$entityManager->flush

$this->render('etudiant/consulter.html.twig' 'etudiant’
$etudiant

$this->render('etudiant/ajouter.html.twig', array('form’
$form->createView

La fonction prend maintenant en parametre la requéte http (composant a ajouter dans les use).
use Symfony\Component\HttpFoundation\Request

Si les données sont validées, les données sont enregistrées en base et la vue de consultation de
I'étudiant est retournée. Sinon, le formulaire est renvoyé de nouveau.

WIKI SIO : DEPUIS 2017 - https://wiki.sio.bts/

https://symfony.com/doc/current/forms.html
http://www.php.net/flush
http://www.php.net/array

Last update: 2021/12/08 08:38 form https://wiki.sio.bts/doku.php?id=form&rev=1638952718

La validation des données
Il existe 3 niveaux de contrbles des données saisies dans le formulaire :

Au niveau de EtudiantForm

Le choix du composant de formulaire permet en lui-méme de contréler les données saisies. Un champ
créé grace a un composant IntegerType n'acceptera pas de caracteres alphabétiques. Chaque
composant dispose en plus de quelques propriétés supplémentaires permettant d'ajouter des
contréles, notamment required, disabled (voir doc).

Au niveau des entités

Symfony dispose d'un composant, le Validator, permettant d'ajouter des contraintes dans les entités,
au niveau des annotations de chaque propriété. Il faut d'abord ajouter ce composant :

composer require symfony/validator doctrine/annotations

La validator propose plusieurs propriétés selon les composants utilisés. Par exemple pour un champ
de type string :

annotations précédentes

Assert\Length(min minMessage “"Le nom doit comporter au moins
2 caracteres"
Assert\Length(max maxMessage “Le nom doit comporter au plus

50 caracteres"
private $nom

Pour la date, voici un exemple de message d'erreur dans le cas ou la date renseignée ne peut pas
étre supérieure a la date du jour :

annotations précédentes

Assert\LessThan("today", message="La date ne peut pas étre supérieure
a aujourd'hui"

Ne pas oublier le use
use Symfony\Component\Validator\Constraints Assert

Ces deux “assertions” obligent I'utilisateur a saisir entre 2 et 50 caracteres.

https://wiki.sio.bts/ Printed on 2026/01/14 11:02

http://www.php.net/assert
http://www.php.net/min
http://www.php.net/assert
http://www.php.net/max
http://www.php.net/assert
http://www.php.net/assert

2026/01/14 11:02 5/6 Création des formulaires

Au niveau des vues

Les formulaires de modifications

Ajout de EtudiantModifierType
Le formulaire de modification qui se nommera EtudiantModifierType étant quasiment le méme que
celui d'ajout, il « héritera » de EtudiantType.

Nous créons donc une méthode getParent permettant de récupérer tous les champs créés dans
EtudiantType. Dans la méthode buildForm, nous désactivons le nom de famille de I'étudiant ; celui-ci
n'étant pas modifiable. Nous changeons également le nom du bouton de validation. Nouvelle classe
EtudiantModifierType dans le dossier Form :

class EtudiantModifierType extends AbstractType

public function buildForm(FormBuilderInterface $builder, array $options

$builder
add('nom', TextType::class, array('label’ 'nom étudiant'
'disabled’ true

add('enregistrer', SubmitType::class, array('label’
'Modifier étudiant'

public function getParent
EtudiantType: : class

public function configureOptions(OptionsResolver $resolver

$resolver->setDefaults
‘data class' Etudiant: :class

Modification du contréleur
La méthode modifierAction de EtudiantController :

 prend donc en paramétre la Request et I'id de I'étudiant

e récupere un objet etudiant hydraté a partir de I'id passé en parametre

e créé |le formulaire autour de cet objet et de EtudiantModifierType

* si les données sont validées, persiste I'étudiant et renvoie un formulaire de consultation des
données modifiées.

e Sinon ré-affiche le formulaire

WIKI SIO : DEPUIS 2017 - https://wiki.sio.bts/

http://www.php.net/array
http://www.php.net/array
http://www.php.net/array

Last update: 2021/12/08 08:38 form https://wiki.sio.bts/doku.php?id=form&rev=1638952718

public function modifierEtudiant($id, Request $request

//récupération de l'étudiant dont 1'id est passé en parametre
$etudiant $this->getDoctrine

getRepository(Etudiant: :class

find($id

$etudiant

$this->createNotFoundException('Aucun etudiant trouvé avec le
numéro '.$id

$form $this->createForm(EtudiantModifierType: :class

$etudiant
$form->handleRequest ($request
$form->isSubmitted $form->isValid
$etudiant $form->getData
$entityManager = $this->getDoctrine getManager
$entityManager->persist($etudiant
$entityManager->flush
$this->render('etudiant/consulter.html.twig"’
‘etudiant’ $etudiant
$this->render('etudiant/ajouter.html.twig’
array('form' $form->createView
From:

https://wiki.sio.bts/ - WIKI SIO : DEPUIS 2017

Permanent link:
https://wiki.sio.bts/doku.php?id=form&rev=1638952718

Last update: 2021/12/08 08:38

https://wiki.sio.bts/ Printed on 2026/01/14 11:02

http://www.php.net/flush
http://www.php.net/array
https://wiki.sio.bts/
https://wiki.sio.bts/doku.php?id=form&rev=1638952718

	Création des formulaires
	Création de EtudiantForm
	Création de la vue
	Modification du contrôleur
	Amelioration de EtudiantType
	Soumettre les données
	La validation des données
	Au niveau de EtudiantForm
	Au niveau des entités
	Au niveau des vues

	Les formulaires de modifications
	Ajout de EtudiantModifierType

