2026/01/14 08:06 1/6 Création des formulaires

Création des formulaires

Création de EtudiantForm

Les formulaires peuvent étre créés grace a une ligne de commande en se basant sur une entité
existante. Nous allons créer le formulaire permettant de saisir les informations d'un étudiant

[l faut d'abord installer le composant permettant la création des formulaires :
composer require symfony/form

La commande ci-dessous permet ensuite de créer un formulaire a partir de I'entité etudiant :
php bin/console make:form

Le systeme nous demande alors le nom de la classe qui contiendra I'ensemble des champs a créer
(celui ci doit avoir pour nom : nomEntiteType) ainsi que le nom de I'entité servant de support a la
construction du formulaire. A chaque propriété de I'entité (sauf id) correspondra un champ de
formulaire.

Exemple pour étudiant :

e The name of the form class : EtudiantType
e The name of Entity or fully qualified model class name that the new form will be bound to :
Etudiant

L'exécution de cette commande créé un nouveau dossier Form dans src et un nouveau fichier
EtudiantType, tres succint.

Création de la vue

Il faut ensuite créer la vue twig (par exemple templates/etudiant/ajouter.html.twig) permettant
I'affichage du formulaire. Les tags twig ci-dessous permettent de gérer I'affichage des différents
éléments du formulaire.

templates/etudiant/ajouter.html.twig #}
form start(form
form widget(form
form_end(form

Modification du controleur

Le contrdleur doit étre modifié pour générer le formulaire grace a EtudiantForm et renvoyer vers la
vue.

WIKI SIO : DEPUIS 2017 - https://wiki.sio.bts/

Last update: 2022/11/14 10:18 form https://wiki.sio.bts/doku.php?id=form&rev=1668421106

public function ajouterEtudiant

$etudiant new etudiant
$form $this->createForm(EtudiantType: :class, $etudiant
$this->render('etudiant/ajouter.html.twig', array
"form' $form->createView

Amelioration de EtudiantType

le formulaire ne contient actuellement que des champs de type input text. Nous allons I'enrichir :
public function buildForm(FormBuilderInterface $builder, array $options

$builder
add('nom', TextType: :class
add('prenom', TextType::class
add('dateNaiss', DateType: :class
‘'widget’ ‘single text'
'format' 'yyyy-MM-dd'

add('ville', TextType: :class

add('numRue', TextType::class

add('rue', TextType::class

add('copos', TextType: :class

add('sexe'

add('surnom', TextType: :class

add('maison', EntityType::class, array('class'

"App\Entity\Maison', 'choice label' ‘nom'’
//->add('promotion"')
add('enregistrer', SubmitType::class, array('label’ "Nouvel
étudiant'

Ne pas oublier les use :

use Symfony\Component\Form\Extension\Core\Type\SubmitType
use Symfony\Component\Form\Extension\Core\Type\TextType

use Symfony\Component\Form\Extension\Core\Type\DateType

use Symfony\Bridge\Doctrine\Form\Type\EntityType

use Symfony\Component\Form\Extension\Core\Type\DateTimeType

Tester le nouveau formulaire : http://localhost/webstudent/public/etudiant/ajouter

Le formulaire contient maintenant un champ date devant étre saisie obligatoirement (propriété
required) et au format francais, une liste déroulante proposant les différents maisons. Tous les

composants html de base peuvent ainsi étre crées avec des propriétés spécifiques. Il est aussi

possible de créer son propre composant. https://symfony.com/doc/current/forms.html

https://wiki.sio.bts/ Printed on 2026/01/14 08:06

http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
https://symfony.com/doc/current/forms.html

2026/01/14 08:06 3/6 Création des formulaires

Soumettre les données

[l faut maintenant envoyer les données en base. La soumission des données est effectuée dans le
controleur.

public function ajouterEtudiant(ManagerRegistry $doctrine, Request $request
$etudiant new etudiant
$form $this->createForm(EtudiantType: :class, $etudiant
$form->handleRequest ($request

$form->isSubmitted $form->isValid
$etudiant $form->getData
$entityManager = $doctrine->getManager
$entityManager-=>persist($etudiant

$entityManager->flush

$this->render('etudiant/consulter.html. twig' 'etudiant’
$etudiant

$this->render('etudiant/ajouter.html.twig', array('form
$form->createView

La fonction prend maintenant en parameétre la requéte http (composant a ajouter dans les use). Ne
pas oublier d'importer EtudiantType

use Symfony\Component\HttpFoundation\Request
use App\Form\EtudiantType

Si les données sont validées, les données sont enregistrées en base et la vue de consultation de
I'étudiant est retournée. Sinon, le formulaire est renvoyé de nouveau.

La validation des données
Il existe 3 niveaux de contrbles des données saisies dans le formulaire :

Au niveau de EtudiantForm

Le choix du composant de formulaire permet en lui-méme de contréler les données saisies. Un champ
créé grace a un composant IntegerType n'acceptera pas de caracteres alphabétiques. Chaque
composant dispose en plus de quelques propriétés supplémentaires permettant d'ajouter des

WIKI SIO : DEPUIS 2017 - https://wiki.sio.bts/

http://www.php.net/flush
http://www.php.net/array

Last update: 2022/11/14 10:18 form https://wiki.sio.bts/doku.php?id=form&rev=1668421106

contréles, notamment required, disabled (voir doc).
Au niveau des entités

Symfony dispose d'un composant, le Validator, permettant d'ajouter des contraintes dans les entités,
au niveau des annotations de chaque propriété. Nous allons ajouter des contraintes de validation au
niveau de I'entité Etudiant. Il faut d'abord ajouter ce composant :

composer require symfony/validator doctrine/annotations
La validator propose plusieurs propriétés selon les composants utilisés. Par exemple, pour ajouter des
contraintes de saisie du nombre de caractéres sur le nom de I'étudiant, il faut ajouter des annotations
au dessus de la propriété nom de I'entité Etudiant.
annotations précédentes
#[Assert\Length(

min

max

minMessage: 'Le nom doit comporter au minimum 2 caracteres'

maxMessage: 'Le nom doit comporter au maximum 50 caracteres'

private $nom

Pour la date, voici un exemple de message d'erreur dans le cas ou la date renseignée ne peut pas
étre supérieure a la date du jour:

annotations précédentes

#[Assert\LessThan('today', message='La date ne peut pas étre supérieure
a aujourd'hui')]
Ne pas oublier le use

use Symfony\Component\Validator\Constraints Assert

Ces deux “assertions” obligent I'utilisateur a saisir entre 2 et 50 caracteres.

Au niveau des vues

Les formulaires de modifications

Ajout de EtudiantModifierType

Le formulaire de modification qui se nommera EtudiantModifierType étant quasiment le méme que
celui d'ajout, il « héritera » de EtudiantType.

Nous créons donc une méthode getParent permettant de récupérer tous les champs créés dans

https://wiki.sio.bts/ Printed on 2026/01/14 08:06

http://www.php.net/min
http://www.php.net/max
http://www.php.net/assert

2026/01/14 08:06 5/6 Création des formulaires

EtudiantType. Dans la méthode buildForm, nous désactivons le nom de famille de I'étudiant ; celui-ci
n'étant pas modifiable. Nous changeons également le nom du bouton de validation. Nouvelle classe
EtudiantModifierType dans le dossier Form :

class EtudiantModifierType extends AbstractType

public function buildForm(FormBuilderInterface $builder, array $options

$builder
add('nom', TextType::class, array('label’ 'nom étudiant'
‘disabled’ true

add('enregistrer', SubmitType::class, array('label’
'Modifier étudiant'

public function getParent
EtudiantType: :class

public function configureOptions(OptionsResolver $resolver

$resolver->setDefaults
‘data_class' Etudiant: :class

Modification du controleur
La méthode modifierAction de EtudiantController :

e prend donc en parameétre la Request et I'id de I'étudiant

e récupéere un objet etudiant hydraté a partir de I'id passé en parametre

e créé le formulaire autour de cet objet et de EtudiantModifierType

* si les données sont validées, persiste I'étudiant et renvoie un formulaire de consultation des
données modifiées.

« Sinon ré-affiche le formulaire

public function modifierEtudiant (ManagerRegistry $doctrine, $id, Request
$request

//récupération de 1'étudiant dont 1'id est passé en paramétre
$etudiant $doctrine

getRepository(Etudiant: :class

find($id

$etudiant
$this->createNotFoundException('Aucun etudiant trouvé avec le

numéro '.$id

WIKI SIO : DEPUIS 2017 - https://wiki.sio.bts/

http://www.php.net/array
http://www.php.net/array
http://www.php.net/array

Last update: 2022/11/14 10:18 form https://wiki.sio.bts/doku.php?id=form&rev=1668421106

$form $this->createForm(EtudiantModifierType: :class

$etudiant
$form->handleRequest ($request
$form->isSubmitted $form->isValid
$etudiant $form->getData
$entityManager = $doctrine getManager
$entityManager->persist($etudiant
$entityManager->flush
$this->render('etudiant/consulter.html.twig"’
'etudiant' $etudiant
$this->render('etudiant/ajouter.html.twig’
array('form' $form->createView
From:

https://wiki.sio.bts/ - WIKI SIO : DEPUIS 2017

Permanent link:
https://wiki.sio.bts/doku.php?id=form&rev=1668421106

Last update: 2022/11/14 10:18

https://wiki.sio.bts/ Printed on 2026/01/14 08:06

http://www.php.net/flush
http://www.php.net/array
https://wiki.sio.bts/
https://wiki.sio.bts/doku.php?id=form&rev=1668421106

	Création des formulaires
	Création de EtudiantForm
	Création de la vue
	Modification du contrôleur
	Amelioration de EtudiantType
	Soumettre les données
	La validation des données
	Au niveau de EtudiantForm
	Au niveau des entités
	Au niveau des vues

	Les formulaires de modifications
	Ajout de EtudiantModifierType

